This is not a coincidence! Peculiar patterns in some Calculus optimization problems explained

Maria Nogin California State University, Fresno mnogin@csufresno.edu

Outline

- 1 The basics
 - Optimizing rectangle
 - Optimizing rectangular prism
- 2 The rectangular field problem
 - Problem
 - Observation
 - Why?
- 3 The can problem
 - Problem
 - Observation
 - Why?
- 4 The ellipse inscribed in a semi-circle problem
 - Problem
 - Observation
 - Why?

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$y = \frac{2400 - 4x}{2} = 1200 - 2x$$

Area(x) = $1200x - 2x^2$
Area'(x) = $1200 - 4x = 0$
 $x = 300$ is an absolute maximum $y = 600$

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$y = \frac{2400 - 4x}{2} = 1200 - 2x$$
Area(x) = $1200x - 2x^2$
Area'(x) = $1200 - 4x = 0$
 $x = 300$ is an absolute maximum $y = 600$

Observation: the total length of vertical pieces: 1200 ft the total length of horizontal pieces: 1200 ft

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$y = \frac{2400 - 4x}{2} = 1200 - 2x$$

Area $(x) = 1200x - 2x^2$
Area $'(x) = 1200 - 4x = 0$
 $x = 300$ is an absolute maximum $y = 600$

Observation: the total length of vertical pieces: 1200 ft

the total length of horizontal pieces: 1200 ft

These are equal!

Let L be the total length of the vertical pieces.

Let L be the total length of the vertical pieces. 2400-L is the total length of the horizontal pieces.

Let L be the total length of the vertical pieces. 2400 -L is the total length of the horizontal pieces.

$$x=\frac{L}{4}$$
,

Let L be the total length of the vertical pieces. 2400 -L is the total length of the horizontal pieces.

$$x = \frac{L}{4}$$
, $y = \frac{2400 - L}{2}$,

Let L be the total length of the vertical pieces. 2400 -L is the total length of the horizontal pieces.

$$x = \frac{L}{4}$$
, $y = \frac{2400 - L}{2}$, $Area(L) = \frac{L}{4} \cdot \frac{2400 - L}{2}$

Let L be the total length of the vertical pieces. 2400 – L is the total length of the horizontal pieces.

$$x = \frac{L}{4}$$
, $y = \frac{2400 - L}{2}$, $Area(L) = \frac{L}{4} \cdot \frac{2400 - L}{2}$

$$h = \frac{1000}{\pi r^2}$$

$$SA(r) = 2\pi r^2 + \frac{2000}{r}$$

$$SA'(r) = 4\pi r - \frac{2000}{r^2} = 0$$

$$r = \sqrt[3]{\frac{500}{\pi}} \text{ is an absolute minimum}$$

$$h = 2\sqrt[3]{\frac{500}{\pi}}$$

A cylindrical can has to have volume 1000cm³. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

Observation: $d = 2\sqrt[3]{\frac{500}{\pi}}$ cm

Observation:
$$d = 2\sqrt[3]{\frac{500}{\pi}}$$
 cm $h = d!$

$$V_{can} = A_{circle}h$$

$$V_{cube} = A_{square}h$$

$$V_{can} = A_{circle}h$$

$$V_{cube} = A_{square}h$$

$$V_{cube} = rac{A_{square}}{A_{circle}} V_{can} = rac{4r^2}{\pi r^2} V_{can} = rac{4}{\pi} V_{can}$$

$$SA_{can} = 2A_{circle} + P_{circle}h$$

$$SA_{can} = 2A_{circle} + P_{circle}h$$
 $SA_{cube} = 2A_{square} + P_{square}h$

Question: is
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
?

$$V_{can} = A_{circle}h$$

$$V_{cube} = A_{square}h$$

$$V_{cube} = rac{A_{square}}{A_{circle}} V_{can} = rac{4r^2}{\pi r^2} V_{can} = rac{4}{\pi} V_{can}$$

$$SA_{can} = 2A_{circle} + P_{circle}h$$
 $SA_{cube} = 2A_{square} + P_{square}h$

$$SA_{cube} = 2A_{square} + P_{square}h$$

Question: is
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
?

Answer:
$$\frac{8r}{2\pi r} = \frac{4r^2}{\pi r^2}$$

$$V_{can} = A_{circle}h$$

$$V_{cube} = A_{square}h$$

$$V_{cube} = rac{A_{square}}{A_{circle}} V_{can} = rac{4r^2}{\pi r^2} V_{can} = rac{4}{\pi} V_{can}$$

$$SA_{can} = 2A_{circle} + P_{circle}h$$

$$SA_{can} = 2A_{circle} + P_{circle}h$$
 $SA_{cube} = 2A_{square} + P_{square}h$

Question: is
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
?

Answer:
$$\frac{8r}{2\pi r} = \frac{4r^2}{\pi r^2}$$
 Yes!

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$
$$\frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

$$\frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

$$\frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

$$\frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

$$= \frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}}$$

$$\frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$\frac{A_{circle}}{P_{circle}} = \frac{A_{square}}{P_{square}} = \frac{A_{hexagon}}{P_{hexagon}}$$

$$= \frac{\pi r^2}{2\pi r} = \frac{4r^2}{8r}$$

Why
$$\frac{P_{square}}{P_{circle}} = \frac{A_{square}}{A_{circle}}$$
 ?

Equivalently:

$$rac{A_{circle}}{P_{circle}} = rac{A_{square}}{P_{square}} = rac{A_{hexagon}}{P_{hexagon}}$$

$$rac{\pi r^2}{2\pi r} = rac{4r^2}{8r} = rac{?}{?}$$

Other boxes

Optimal shape: h = 2r

Of all ellipses inscribed in a semi-circle of radius 1, find the one with the largest possible area.

Hint: If the semicircle is given by the equation $x^2 + y^2 = 1$, $y \ge 0$, the ellipse should have equation of the form $\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$.

Of all ellipses inscribed in a semi-circle of radius 1, find the one with the largest possible area.

Hint: If the semicircle is given by the equation $x^2 + y^2 = 1$, $y \ge 0$, the ellipse should have equation of the form $\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$.

Answer: optimal dimensions are $a = \frac{\sqrt{6}}{3}$ and $b = \frac{\sqrt{2}}{3}$.

Of all ellipses inscribed in a semi-circle of radius 1, find the one with the largest possible area.

Hint: If the semicircle is given by the equation $x^2 + y^2 = 1$, $y \ge 0$, the ellipse should have equation of the form $\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$.

Answer: optimal dimensions are $a=\frac{\sqrt{6}}{3}$ and $b=\frac{\sqrt{2}}{3}$. Points of tangency are $\left(\pm\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

Of all ellipses inscribed in a semi-circle of radius 1, find the one with the largest possible area.

Hint: If the semicircle is given by the equation $x^2 + y^2 = 1$, $y \ge 0$, the ellipse should have equation of the form $\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$.

Answer: optimal dimensions are $a=\frac{\sqrt{6}}{3}$ and $b=\frac{\sqrt{2}}{3}$. Points of tangency are $\left(\pm\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

Thank you!