This is not a coincidence!
 Peculiar patterns in some Calculus optimization problems explained

Maria Nogin

California State University, Fresno mnogin@csufresno.edu

Outline

1 The basics
■ Optimizing rectangle
■ Optimizing rectangular prism
2 The rectangular field problem

- Problem
- Observation
- Why?

3 The can problem

- Problem
- Observation
- Why?

4 The ellipse inscribed in a semi-circle problem

- Problem
- Observation

■ Why?

Optimizing rectangle

Out of all rectangles with a given perimeter, which one has the greatest area?

Optimizing rectangle

Out of all rectangles with a given perimeter, which one has the greatest area?

Optimizing rectangle

Out of all rectangles with a given perimeter, which one has the greatest area?

Optimizing rectangle

Out of all rectangles with a given perimeter, which one has the greatest area?

Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has the smallest surface area?

Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has the smallest surface area?

Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has the smallest surface area?

Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has the smallest surface area?

Optimizing rectangular prism

Out of all rectangular prisms with a given volume, which one has the smallest surface area?

The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$
\begin{aligned}
& y=\frac{2400-4 x}{2}=1200-2 x \\
& \text { Area }(x)=1200 x-2 x^{2} \\
& \operatorname{Area}^{\prime}(x)=1200-4 x=0 \\
& x=300 \text { is an absolute maximum } \\
& y=600
\end{aligned}
$$

The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$
\begin{aligned}
& y=\frac{2400-4 x}{2}=1200-2 x \\
& \text { Area }(x)=1200 x-2 x^{2} \\
& \text { Area }^{\prime}(x)=1200-4 x=0 \\
& x=300 \text { is an absolute maximum } \\
& y=600
\end{aligned}
$$

Observation:
the total length of vertical pieces: 1200 ft the total length of horizontal pieces: 1200 ft

The rectangular field roblem

A farmer wants to fence off a rectangular field and divide it into 3 pens with fence parallel to one pair of sides. He has a total 2400 ft of fencing. What are the dimensions of the field that has the largest possible area?

$$
\begin{aligned}
& y=\frac{2400-4 x}{2}=1200-2 x \\
& \text { Area }(x)=1200 x-2 x^{2} \\
& \text { Area }^{\prime}(x)=1200-4 x=0 \\
& x=300 \text { is an absolute maximum } \\
& y=600
\end{aligned}
$$

Observation: the total length of vertical pieces: 1200 ft the total length of horizontal pieces: 1200 ft
These are equal!

Why? Functional explanation

Why? Functional explanation

Let L be the total length of the vertical pieces.

Why? Functional explanation

Let L be the total length of the vertical pieces.
$2400-L$ is the total length of the horizontal pieces.

Why? Functional explanation

Let L be the total length of the vertical pieces.
$2400-L$ is the total length of the horizontal pieces.
$x=\frac{L}{4}$,

Why? Functional explanation

Let L be the total length of the vertical pieces.
$2400-L$ is the total length of the horizontal pieces.

$$
x=\frac{L}{4}, \quad y=\frac{2400-L}{2},
$$

Why? Functional explanation

Let L be the total length of the vertical pieces.
$2400-L$ is the total length of the horizontal pieces.

$$
x=\frac{L}{4}, \quad y=\frac{2400-L}{2}, \quad \operatorname{Area}(L)=\frac{L}{4} \cdot \frac{2400-L}{2}
$$

Why? Functional explanation

Let L be the total length of the vertical pieces.
$2400-L$ is the total length of the horizontal pieces.

$$
x=\frac{L}{4}, \quad y=\frac{2400-L}{2}, \quad \operatorname{Area}(L)=\frac{L}{4} \cdot \frac{2400-L}{2}
$$

Why? Geometric explanation 1

Why? Geometric explanation 2

Why? Geometric explanation 2

Why? Geometric explanation 2

Why? Geometric explanation 2

The can problem

A cylindrical can has to have volume $1000 \mathrm{~cm}^{3}$. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

The can problem

A cylindrical can has to have volume $1000 \mathrm{~cm}^{3}$. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

The can problem

A cylindrical can has to have volume $1000 \mathrm{~cm}^{3}$. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

$$
\begin{aligned}
& h=\frac{1000}{\pi r^{2}} \\
& S A(r)=2 \pi r^{2}+\frac{2000}{r} \\
& S A^{\prime}(r)=4 \pi r-\frac{2000}{r^{2}}=0 \\
& r=\sqrt[3]{\frac{500}{\pi}} \text { is an absolute minimum } \\
& h=2 \sqrt[3]{\frac{500}{\pi}}
\end{aligned}
$$

The can problem

A cylindrical can has to have volume $1000 \mathrm{~cm}^{3}$. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

$$
\begin{aligned}
& h=\frac{1000}{\pi r^{2}} \\
& S A(r)=2 \pi r^{2}+\frac{2000}{r} \\
& S A^{\prime}(r)=4 \pi r-\frac{2000}{r^{2}}=0 \\
& r=\sqrt[3]{\frac{500}{\pi}} \text { is an absolute minimum } \\
& h=2 \sqrt[3]{\frac{500}{\pi}}
\end{aligned}
$$

Observation: $\quad d=2 \sqrt[3]{\frac{500}{\pi}} \mathrm{~cm}$

The can problem

A cylindrical can has to have volume $1000 \mathrm{~cm}^{3}$. Find the dimensions of the can that minimize the amount of material used (i.e. minimize the surface area).

$$
\begin{aligned}
& h=\frac{1000}{\pi r^{2}} \\
& S A(r)=2 \pi r^{2}+\frac{2000}{r} \\
& S A^{\prime}(r)=4 \pi r-\frac{2000}{r^{2}}=0 \\
& r=\sqrt[3]{\frac{500}{\pi}} \text { is an absolute minimum } \\
& h=2 \sqrt[3]{\frac{500}{\pi}}
\end{aligned}
$$

Observation: $\quad d=2 \sqrt[3]{\frac{500}{\pi}} \mathrm{~cm} \quad h=d!$

Why is this so?

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$
$V_{\text {cube }}=A_{\text {square }} h$

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$

$V_{\text {cube }}=A_{\text {square }} h$

$$
V_{\text {cube }}=\frac{A_{\text {square }}}{A_{\text {circle }}} V_{\text {can }}=\frac{4 r^{2}}{\pi r^{2}} V_{\text {can }}=\frac{4}{\pi} V_{\text {can }}
$$

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$
$V_{\text {cube }}=A_{\text {square }} h$

$$
V_{\text {cube }}=\frac{A_{\text {square }}}{A_{\text {circle }}} V_{\text {can }}=\frac{4 r^{2}}{\pi r^{2}} V_{\text {can }}=\frac{4}{\pi} V_{\text {can }}
$$

$S A_{\text {can }}=2 A_{\text {circle }}+P_{\text {circle }} h \quad S A_{\text {cube }}=2 A_{\text {square }}+P_{\text {square }} h$

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$
$V_{\text {cube }}=A_{\text {square }} h$

$$
V_{\text {cube }}=\frac{A_{\text {square }}}{A_{\text {circle }}} V_{\text {can }}=\frac{4 r^{2}}{\pi r^{2}} V_{\text {can }}=\frac{4}{\pi} V_{\text {can }}
$$

$S A_{\text {can }}=2 A_{\text {circle }}+P_{\text {circle }} h \quad S A_{\text {cube }}=2 A_{\text {square }}+P_{\text {square }} h$
Question: is $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$
$V_{\text {cube }}=A_{\text {square }} h$

$$
V_{\text {cube }}=\frac{A_{\text {square }}}{A_{\text {circle }}} V_{\text {can }}=\frac{4 r^{2}}{\pi r^{2}} V_{\text {can }}=\frac{4}{\pi} V_{\text {can }}
$$

$S A_{\text {can }}=2 A_{\text {circle }}+P_{\text {circle }} h \quad S A_{\text {cube }}=2 A_{\text {square }}+P_{\text {square }} h$
Question: is $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Answer:

$$
\frac{8 r}{2 \pi r}=\frac{4 r^{2}}{\pi r^{2}}
$$

Why is this so?

$V_{\text {can }}=A_{\text {circle }} h$
$V_{\text {cube }}=A_{\text {square }} h$

$$
V_{\text {cube }}=\frac{A_{\text {square }}}{A_{\text {circle }}} V_{\text {can }}=\frac{4 r^{2}}{\pi r^{2}} V_{\text {can }}=\frac{4}{\pi} V_{\text {can }}
$$

$S A_{\text {can }}=2 A_{\text {circle }}+P_{\text {circle }} h \quad S A_{\text {cube }}=2 A_{\text {square }}+P_{\text {square }} h$
Question: is $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Answer:

$$
\frac{8 r}{2 \pi r}=\frac{4 r^{2}}{\pi r^{2}} \quad \text { Yes! }
$$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\frac{A_{\text {circle }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{P_{\text {square }}}
$$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\begin{aligned}
& \frac{A_{\text {circle }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{P_{\text {square }}} \\
& \frac{\pi r^{2}}{2 \pi r}=\frac{4 r^{2}}{8 r}
\end{aligned}
$$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\begin{aligned}
& \frac{A_{\text {circle }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{P_{\text {square }}} \\
& \frac{\pi r^{2}}{2 \pi r}=\frac{4 r^{2}}{8 r}
\end{aligned}
$$

The denominator is the derivative of the numerator!

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}} \quad ?$
Equivalently:

$$
\begin{array}{lll}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{4 r^{2}}{8 r}
\end{array}
$$

The denominator is the derivative of the numerator!

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}} \quad ?$
Equivalently:

$$
\begin{array}{lll}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{4 r^{2}}{8 r}
\end{array}
$$

The denominator is the derivative of the numerator!

$$
\frac{a r^{2}}{2 a r}
$$

$=\quad \frac{b r^{2}}{2 b r}$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\begin{array}{lll}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{4 r^{2}}{8 r}
\end{array}
$$

The denominator is the derivative of the numerator!

$$
\frac{a r^{2}}{2 a r}
$$

$=\quad \frac{b r^{2}}{2 b r}$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\begin{array}{lll}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{4 r^{2}}{8 r}
\end{array}
$$

The denominator is the derivative of the numerator!

$$
\frac{a r^{2}}{2 a r}
$$

$=\quad \frac{b r^{2}}{2 b r}$

$=\quad \frac{c r^{2}}{2 c r}$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}} \quad ?$
Equivalently:

$$
\begin{array}{llll}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} & = \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{A_{\text {hexagon }}}{P_{\text {hexagon }}} \\
\hline r &
\end{array}
$$

The denominator is the derivative of the numerator!

$$
\frac{a r^{2}}{2 a r}
$$

$=\quad \frac{b r^{2}}{2 b r}$

$=\quad \frac{c r^{2}}{2 c r}$

Is that a coincidence?

Why $\frac{P_{\text {square }}}{P_{\text {circle }}}=\frac{A_{\text {square }}}{A_{\text {circle }}}$?
Equivalently:

$$
\begin{array}{ccccc}
\frac{A_{\text {circle }}}{P_{\text {circle }}} & = & \frac{A_{\text {square }}}{P_{\text {square }}} & = & \frac{A_{\text {hexagon }}}{P_{\text {hexagon }}} \\
\frac{\pi r^{2}}{2 \pi r} & = & \frac{4 r^{2}}{8 r} & = & \frac{?}{?}
\end{array}
$$

The denominator is the derivative of the numerator!

$$
\frac{a r^{2}}{2 a r}
$$

$=\quad \frac{b r^{2}}{2 b r}$

$=\quad \frac{c r^{2}}{2 c r}$

Other boxes

Optimal shape: $h=2 r$

The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1 , find the one with the largest possible area. Hint: If the semicircle is given by the equation $x^{2}+y^{2}=1, y \geq 0$, the ellipse should have equation of the form $\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1$.

The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1 , find the one with the largest possible area.
Hint: If the semicircle is given by the equation $x^{2}+y^{2}=1, y \geq 0$, the ellipse should have equation of the form $\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1$.

Answer: optimal dimensions are $a=\frac{\sqrt{6}}{3}$ and $b=\frac{\sqrt{2}}{3}$.

The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1 , find the one with the largest possible area.
Hint: If the semicircle is given by the equation $x^{2}+y^{2}=1, y \geq 0$, the ellipse should have equation of the form $\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1$.

Answer: optimal dimensions are $a=\frac{\sqrt{6}}{3}$ and $b=\frac{\sqrt{2}}{3}$.
Points of tangency are $\left(\pm \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

The ellipse inscribed in a semi-circle problem

Of all ellipses inscribed in a semi-circle of radius 1 , find the one with the largest possible area.
Hint: If the semicircle is given by the equation $x^{2}+y^{2}=1, y \geq 0$, the ellipse should have equation of the form $\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1$.

Answer: optimal dimensions are $a=\frac{\sqrt{6}}{3}$ and $b=\frac{\sqrt{2}}{3}$.
Points of tangency are $\left(\pm \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Why is this so?

Why is this so?

Why is this so?

Thank you！

